Photo by Pixabay on Pexels.com

機械学習でオススメ記事を作ってみる。

20231024

Logging

おはようございます、機械学習でオススメ記事を作ってみる。仕組みはこんな感じです😄。

  • 記事から同じ傾向の記事を取得する。
  • 記事のMeCabを使用して分割。分離したものを機械学習に投入。
  • 出来上がったモデルから似ている傾向の記事を抽出。
  • 新規記事を投稿した場合、再学習させモデルに追加。

上記の流れをCHATGPTに投げ込んでコードを生成してもらい、そのコードを再修正してAPI化したものを仕事終わりに週末作ろうと思っています。出来ればそれを元に自分だけしか使えないプラグインにしてWordPressに取り組むつもりでいます。

これでどれぐらいの精度がでるのかは、やってみないと分かりませんが試す価値はあるかなって思っています。あと、作りたいのはクリックしたものを機械学習させて何か出来たら良いなって思っています、また、記事学習モデルから、チャット形式でこんな記事はどうですかってオススメする物を作りたいですね。

明日へ続く。

0 Views

著者名  @taoka_toshiaki

Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki

タグ

API化, ChatGPT, Mecab, WordPress, コード, チャット形式, プラグイン, モデル, 仕事終わり, 価値, 傾向, , 分割, 投入, 抽出, 機械, 機械学習, 精度, 記事学習モデル, 週末,