文字数[1165文字] この記事は1分27秒で読めます.

手前味噌な機械学習!?。

20200901

Logging

分類分けで機械学習教師ありのモデルを作り、新たなデータで推測するという一連の過程をやってみたよーーー?
ちなみに分類分けとしてはあまり機能していないだけどね・・・。
何が難しかったか・・・Pythonをサーバで動かすようにするところと・・・何故かすんなり動いてくれなかった。そして機械学習させるデータを作るのがやはり面倒だった、途中から分類分けって感じじゃなく1分類という感覚で重み付けしました。

尚、サンプルとして表示しているのは、機械学習させてモデルを保存させるやつです。この他にもいろいろなファイルがあるのだけど、例えばデータを生成させたりする処理ファイルや保存したモデルから推測させる処理ファイルなどいろいろなファイルがあるのだけど、全て解説するのはちょっと面倒なので今回はこれだけです。

あと質問箱と連携するのは今後の質問によって決めようと思います。いちおう、ほぼその部分も完成しています。コードを手直してそれぞれをファイル連携してゴニョゴニョするという作業が残っています。

追記:きっちり分類分けしてそのデータをansの中に正解解答としていれてあげて学習させるとまぁまぁ良い感じです。

from sklearn.linear_model import LinearRegression
model = LinearRegression()
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import pickle
X = pd.read_csv("Question.csv", header=None).values.tolist()
ans = []
val = 0
for num1 in range(len(X)):
	for num2 in range(len(X[num1])):
		if float(X[num1][num2])>=0.5:
			val = val + 1
	val = float(float(val) / float(len(X)) * 100)
	ans.append(str(val))
	val = 0
model = DecisionTreeClassifier(max_depth=999)
model.fit(X,ans)
print(ans,"<==>",model.predict(X))
# モデルを保存する
filename = 'Q_model.sav'
pickle.dump(model, open(filename, 'wb'))

1732番目の投稿です/95 回表示されています.

著者名  @taoka_toshiaki

※この記事は著者が40代前半に書いたものです.

Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki

OFUSEで応援を送る

コメントは受け付けていません。

タグ

, Python, あと, いろいろ, コード, これだけ, サーバ, サンプル, それぞれ, データ, ところ, ファイル, モデル, やつ, 一連, 今回, 今後, , , 保存, 全て, 処理, 分け, 分類, 学習, 完成, 感覚, 手前味噌, 手直, 推測, 教師, 機械, 機能, 生成, 表示, 解説, 質問, 途中, 連携, 過程, 部分, 重み, 面倒,