@Blog
日常日誌からプログラムやYOUTUBER紹介、旅日記まで日々更新中です。

英語学習にお金を使うように考えを変えます.今まで何度も
2025.07.04
おはようございます.英語学習にお金を使うように考えを変えます.今まで何度も挫折してきた英語学習にお金をかけようと思っています.自分が望むものはサブスクでスマホやPCで勉強が学べるものです.
そういうものを考えたときに浮かぶのがスタディサプリです.スタディサプリみたいなアプリが他にもないのか調べてみました.
自分で調べるのは面倒なのでGeminiさんに調べてもらいました、下記が返答結果になります.
スタディサプリ以外にも、オンラインで学習できるサービスはたくさんあります。対象年齢や学習内容によって様々な選択肢があるので、ご自身の目的やレベルに合わせて検討してみてください。
いくつか代表的な類似サービスやカテゴリーを挙げます。
大手予備校・通信教育系のオンラインサービス
- Z会: 小学生から高校生、大学受験生まで幅広い層に対応した通信教育の老舗。映像授業と丁寧な添削指導が特徴です。
- 進研ゼミ: ベネッセが提供する、小・中・高校生向けの通信教育。タブレット学習やAIを活用した個別最適化された学習が強みです。
- 東進ハイスクール在宅受講コース / 東進オンライン学校: 有名講師による質の高い映像授業が特徴。大学受験に強いです。
- 学研プライムゼミ: 高校生・浪人生向けのハイレベルな映像授業が中心。難関大学対策に特化しています。
- 河合塾One: 河合塾が提供するオンライン学習サービスで、短時間で手軽に学べるコンテンツが特徴です。
AI学習・個別最適化に特化したサービス
- アタマプラス (atama+): AIが生徒の理解度に合わせて最適なカリキュラムを生成し、個別指導のように学習を進められるサービスです。塾や学校への導入も進んでいます。
- すらら: AIが生徒の学習状況を分析し、最適な問題を提供。特に苦手克服や学習習慣の定着に力を入れています。無学年式なので、さかのぼり学習も可能です。
- スマイルゼミ: タブレットを活用した小・中学生向けの通信教育。AIが学習状況に合わせた問題を出題し、定着を促します。
資格取得・ビジネススキル系のオンライン学習サービス
- Schoo (スクー): ビジネススキルやITスキルなど、幅広い分野のオンライン授業をライブ配信や録画で提供しています。
- Udemy (ユーデミー): 世界中の講師が様々な分野の講座を販売しているプラットフォーム。買い切り型で、セール時には大幅割引もあります。
- スタディング: 簿記やITパスポートなど、資格取得に特化したオンライン講座を多数提供しています。
- ユーキャン / ヒューマンアカデミー / 資格のキャリカレ / フォーサイト など: 各種資格取得に特化した通信講座を提供しています。
その他
- N予備校: KADOKAWAとドワンゴが運営する、高校生向けのオンライン学習サービス。多様な講座やプログラミング学習もできます。
- Classi (クラッシー): 学校で導入されていることが多い学習支援プラットフォームで、学習動画やドリルなどが提供されます。
自分で調べるより本当にチャットAIで調べたほうが早いですね便利です、ちなみに生成AIに勉強を教えてもらうという方法もあるようです、自分もある程度身についたらそういう方向にシフトしていくつもりでいますが、何せ土台がガタガタなのでお金をかけて勉強をしようと思っています.
明日へ続く
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
```, アカデミー, アタマ, アプリ, いくつ, オンライン, お金, ガタガタ, カテゴリー, カリキュラム, キャリカレ, クラッシー, コース, こと, コンテンツ, サービス, サブスク, サン, シフト, スキル, スクー, スタディサプリ, スタディング, スマイル, スマホ, セール, セミ, その他, たくさん, タブレット, チャット, つもり, とき, ドリル, ドワンゴ, ハイスクール, ハイレベル, パスポート, ビジネス, ヒューマン, フォーサイト, プライム, プラス, プラットフォーム, プログラミング, ベネッセ, ほう, みたい, もの, ユーキャン, ユーデミー, よう, ライブ, レベル, 丁寧, 下記, 世界中, 中心, 予備校, 代表, 以外, 便利, 個別, 克服, 内容, 出題, 分析, 分野, 割引, 勉強, 動画, 取得, 受講, 受験, 受験生, 可能, 各種, 向け, 問題, 土台, 在宅, 多数, 多様, 大学, 大幅, 大手, 学年, 学校, 学研, 学習, 定着, 対応, 対策, 対象, 導入, 小・中学生, 小学生, 年齢, 強み, 手軽, 指導, 挫折, 授業, 提供, 支援, 教育, 方向, 方法, 明日, 映像, 最適, 有名, 東進, 検討, 様々, 河合塾, 活用, 浪人, 添削, 特徴, 状況, 理解, 生徒, 生成, 目的, 短時間, 簿記, 結果, 習慣, 老舗, 考え, 自分, 自身, 苦手, 英語, 講師, 講座, 販売, 資格, 返答, 通信, 運営, 選択肢, 配信, 録画, 難関, 面倒, 類似, 高校生,

AIで記事を学習して新たな記事を生み出すにはお金が必要だと思っていたがそうでも.
2025.06.22
おはようございます.AIで記事を学習して新たな記事を生み出すにはお金が必要だと思っていたがそうでもなくローカルPCでそこら辺に落ちているLlamaモデルを持ってきてチューニングすれば何とかなるじゃねぇという思いに至った.
実はあなたの手元にあるPCと、そこら中に「落ちている」オープンソースのAIモデル、特にLlama 3があれば、十分記事が生成できるんです。
ローカルAI記事生成は、もはや夢物語じゃない
「AIで記事生成」と聞くと、SFのような世界や、大企業だけが使える特権のように感じるかもしれません。しかし、今は違います。オープンソースの強力な言語モデル、特にMetaが公開したLlama 3の登場は、この常識を大きく覆しました。
Llama 3は、その性能の高さにもかかわらず、誰でも無料で利用できるという点が最大の魅力です。さらに、80億パラメータの8Bモデルであれば、最新のゲーミングPCとまではいかなくとも、ある程度の性能を持つPCであれば十分に動作します。これにより、高額なクラウドサービスを利用せずとも、自分のPCでAI記事生成の環境を構築することが現実的になりました。
なぜLlama 3があなたのPCと相性抜群なのか?
Llama 3がローカルPCでの記事生成に適している理由はいくつかあります。
- 完全無料のオープンソース: 利用に費用がかからないため、予算を気にせずAIを試したり、本格的に導入したりできます。
- 選べるモデルサイズ: Llama 3には様々なサイズのモデルがあり、PCのスペックに合わせて選べます。特に8Bモデルは、個人利用に最適なバランスを持っています。
- 活発な開発者コミュニティ: 世界中の開発者がLlama 3を使った新しいツールや効率的なチューニング方法を日々共有しています。困ったときには助けを借りられる心強い味方です。
- 「量子化」でさらに軽量に: モデルのサイズを大幅に小さくする「量子化」という技術を使えば、より少ないメモリでLlama 3を動かせるようになります。これにより、より多くのPCで利用の道が開けます。
あなたのPCを「記事生成マシン」に変える秘訣
もちろん、いきなりプロのライター並みの記事をAIに書かせるのは難しいかもしれません。しかし、ちょっとした工夫で「何とかなる」レベルの記事生成は十分に可能です。
- 少量のデータでファインチューニング: 大量の記事データは不要です。あなたが書きたい記事のテーマやスタイルに合った、質の良い記事を数十〜数百程度集めてLlama 3を学習(ファインチューニング)させれば、その分野に特化した記事生成能力が格段に向上します。
- プロンプト(指示文)の工夫: AIへの「指示の出し方」は非常に重要です。具体的で明確なプロンプトを与えることで、チューニングが完璧でなくても、驚くほど質の高い記事が生成できます。これはまるで、優秀なアシスタントに的確な指示を出すようなものです。
- 効率的な学習方法の活用: 「LoRA(Low-Rank Adaptation)」のような効率的なファインチューニング手法を使えば、少ないGPUメモリでも短時間でモデルを特定のタスクに最適化できます。
あなたの創造性が、今、AIで加速する
かつては一部の専門家や企業にしか手の届かなかったAIによる記事生成が、今やあなたのPCで実現できる時代になりました。これはまさにAI技術の「民主化」です。
とまぁそういう訳なので何とかしてみますが、ファインチューニングにどれぐらい時間がかかるのかが未知数だったりする.
ファインチューニングPythonコード
以下のPythonコードは、Llama 3モデルをロードし、提供されたテキスト記事でファインチューニング(LoRA使用)を実行し、結果を保存します。 上記の入力値は、このコードに自動的に反映されます。 このコードをPythonファイル(例: `finetune_llama.py`)として保存し、実行してください。
import os
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
# GPUの利用可能性を確認
print("GPUが利用可能か確認中...")
if not torch.cuda.is_available():
print("GPUが見つかりません。Fine-tuningにはGPUが強く推奨されます。")
# GPUがない場合は、ここでスクリプトを終了するか、CPUモードで続行するか選択できます。
# exit("GPUがないため終了します。")
else:
print(f"GPUが利用可能です: {torch.cuda.get_device_name(0)}")
# --- 1. モデルとトークナイザーのロード ---
# Llama 3モデルのパスを指定します。Hugging Faceのモデル名(例: "meta-llama/Llama-3-8B")
# またはローカルにダウンロードしたモデルのパスを指定してください。
MODEL_NAME = "meta-llama/Llama-3-8B" # ユーザーが入力したパスがここに挿入されます
print(f"モデルとトークナイザーをロード中: {MODEL_NAME}")
# 4bit量子化設定 (GPUメモリの節約に役立ちます)
# bnb_4bit_compute_dtypeは、Ampere以降のNVIDIA GPUに推奨されるbfloat16を使用しています。
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4", # NF4 (NormalFloat4) 量子化タイプ
bnb_4bit_compute_dtype=torch.bfloat16
)
# トークナイザーをロード
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
# Llama 3はデフォルトでbos_tokenを付与しないことがあるため、明示的に追加。
# また、padding_side='right'はLlamaモデルに推奨される設定です。
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# モデルをロードし、量子化設定を適用し、自動的にGPUにマッピングします。
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
device_map="auto", # 利用可能なデバイス(GPU)に自動的にモデルを分散
trust_remote_code=True # リモートコードの実行を許可
)
print("モデルロード完了。")
# k-bit学習用にモデルを準備 (PEFTライブラリのため)
# gradient_checkpointingを有効にすることで、メモリ使用量をさらに削減できます。
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
print("k-bit学習用にモデルを準備しました。")
# --- 2. データセットの準備 ---
# あなたのテキスト記事ファイルが格納されているディレクトリを指定します。
# 例: 'your_article_data/' の中に 'article1.txt', 'article2.txt', ... と置かれている場合
DATA_DIR = "./your_article_data/" # ユーザーが入力したパスがここに挿入されます
print(f"データセットをロード中: {DATA_DIR}")
# 'text'形式でデータセットをロードします。指定されたディレクトリ内のすべての.txtファイルを読み込みます。
# 各ファイルが1つのエントリとして扱われます。
try:
dataset = load_dataset('text', data_files={'train': os.path.join(DATA_DIR, '*.txt')})
print(f"データセットのサンプル数: {len(dataset['train'])}")
except Exception as e:
print(f"データセットのロード中にエラーが発生しました。ディレクトリとファイル形式を確認してください: {e}")
exit("データセットロード失敗。")
# データセットをトークン化する関数
# 長い記事をモデルの最大入力長に分割します。
def tokenize_function(examples):
# Llama 3の最大入力長は通常8192ですが、お使いのGPUのVRAMに合わせて調整してください。
# ここでは一般的な値として2048を設定しています。
max_length = 2048
# truncate=Trueで最大長を超えるテキストを切り捨てます。
return tokenizer(examples["text"], truncation=True, max_length=max_length)
# データセットをトークン化します。
# num_procはCPUコア数に応じて並列処理を行い、処理を高速化します。
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
num_proc=os.cpu_count(),
remove_columns=["text"] # 元のテキスト列は学習に不要になるため削除します。
)
print("データセットのトークン化が完了しました。")
# --- 3. PEFT (LoRA) の設定 ---
# LoRA (Low-Rank Adaptation) は、元のモデルの重みをフリーズし、
# 小さなアダプター層を追加して学習させることで、効率的にファインチューニングを行います。
# これにより、GPUメモリの使用量を抑えつつ、高い性能を実現できます。
lora_config = LoraConfig(
r=16, # LoRAのランク。値を大きくすると表現力が増すが、メモリ消費も増える。
lora_alpha=32, # LoRAのスケーリング係数。rの2倍程度が推奨されることが多いです。
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], # LoRAを適用する層。Llamaモデルで一般的な層。
bias="none", # バイアスを学習しない設定。
lora_dropout=0.05, # ドロップアウト率。過学習を防ぐために設定します。
task_type=TaskType.CAUSAL_LM, # タスクタイプを因果言語モデルに設定。
)
# モデルにLoRAアダプターを追加します。
model = get_peft_model(model, lora_config)
print("モデルにLoRAアダプターを適用しました。")
model.print_trainable_parameters() # 学習可能なパラメータ数を確認します。
# --- 4. 学習の実行 ---
# 学習済みモデルを保存するディレクトリ
OUTPUT_DIR = "./llama3_finetuned_model/" # ユーザーが入力したパスがここに挿入されます
# 学習の設定
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
num_train_epochs=3, # エポック数。データセットのサイズと希望する精度に応じて調整してください。
per_device_train_batch_size=1, # GPUあたりのバッチサイズ。VRAMが少ない場合は1に設定。
gradient_accumulation_steps=4, # 勾配を蓄積するステップ数。実質的なバッチサイズは per_device_train_batch_size * gradient_accumulation_steps になります。
optim="paged_adamw_8bit", # 8bit AdamWオプティマイザを使用し、メモリ効率を向上させます。
save_steps=500, # 500ステップごとにモデルを保存します。
logging_steps=100, # 100ステップごとにログを出力します。
learning_rate=2e-4, # 学習率。
fp16=True, # 混合精度学習を有効化 (GPUが対応している場合)。VRAM削減と高速化に寄与します。
max_steps=-1, # num_train_epochsに基づいて学習します。
group_by_length=True, # 同じ長さのシーケンスをグループ化し、パディングを削減します。
lr_scheduler_type="cosine", # 学習率スケジューラーのタイプ。
warmup_ratio=0.03, # ウォームアップ比率。
report_to="none", # レポート先を指定しない (wandbなどを使用しない場合)。
)
# トレーナーの初期化
# data_collatorは、モデルの入力形式に合わせてデータを整形します。
trainer = Trainer(
model=model,
train_dataset=tokenized_dataset["train"],
args=training_args,
data_collator=lambda data: {
'input_ids': torch.stack([f['input_ids'] for f in data]),
'attention_mask': torch.stack([f['attention_mask'] for f in data]),
'labels': torch.stack([f['input_ids'] for f in data]), # 因果言語モデルでは、入力自体がラベルとなります。
},
)
# 学習の開始
print("Fine-tuningを開始します...")
trainer.train()
print("Fine-tuningが完了しました。")
# --- 5. 学習済みモデルの保存 ---
# LoRAアダプターのみを保存します。これにより、ファイルサイズが小さく、効率的に管理できます。
trainer.save_model(OUTPUT_DIR)
print(f"学習済みLoRAアダプターが '{OUTPUT_DIR}' に保存されました。")
# 保存したアダプターを使って推論を行う方法の例 (コメントアウトされています):
# このコードは、ファインチューニング後にモデルをロードして推論を行うための参考例です。
# from peft import PeftModel
#
# # 元のモデルをロード (学習時と同じ量子化設定を使用します)
# base_model = AutoModelForCausalLM.from_pretrained(
# MODEL_NAME,
# quantization_config=bnb_config,
# device_map="auto",
# trust_remote_code=True
# )
#
# # 保存したLoRAアダプターを元のモデルに結合します。
# peft_model = PeftModel.from_pretrained(base_model, OUTPUT_DIR)
#
# # 推論モードに設定します。
# peft_model.eval()
#
# # テキスト生成の例
# prompt = "ローカルPCでのLlama 3ファインチューニングの利点とは"
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # 入力をGPUに移動
#
# with torch.no_grad(): # 勾配計算を無効化し、メモリ使用量を削減
# outputs = peft_model.generate(
# **inputs,
# max_new_tokens=200, # 生成する新しいトークンの最大数
# do_sample=True, # サンプリングによる生成を有効化
# top_p=0.9, # Nucleusサンプリングの閾値
# temperature=0.7, # 生成の多様性を制御する温度
# eos_token_id=tokenizer.eos_token_id # 終了トークンID
# )
# print("\n--- 生成されたテキスト ---")
# print(tokenizer.decode(outputs[0], skip_special_tokens=True))
明日へ続く
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
```, ;;), )。, アウト, アシスタント, アダプター, あたり, アップ, あなた, いくつ, ウォーム, エポック, エラー, エントリ, オープン, オプティマイザ, お金, クラウドサービス, グループ, クン, ゲーミング, コード, コア, ここ, こと, コミュニティ, コメント, これ, サイズ, サンプリング, サンプル, シーケンス, スクリプト, スケーリング, スケジューラー, スタイル, ステップ, スペック, すべて, ソース, そこら, タイプ, ダウンロード, タスク, ため, チューニング, ツール, データ, データセット, テーマ, ディレクトリ, テキスト, デバイス, デフォルト, トー, トークナイザー, とき, どれ, トレーナー, ドロップ, バイアス, パス, バッチ, パディング, パラメータ, バランス, ファイル, ファイルサイズ, ファインチューニング, ファインチューニングコード, フリーズ, プロ, プロンプト, マシン, マッピング, メモリ, モード, モデル, もの, ユーザー, よう, ライター, ライブラリ, ラベル, ランク, リモート, レベル, レポート, ローカル, ロード, ログ, 一般, 一部, 上記, 不要, 世界, 世界中, 並み, 並列, 予算, 付与, 以下, 以降, 企業, 使い, 使用, 係数, 保存, 個人, 優秀, 入力, 公開, 共有, 具体, 処理, 出力, 分割, 分散, 分野, 初期, 利点, 利用, 制御, 削減, 削除, 創造, 加速, 助け, 効率, 動作, 勾配, 十分, 参考, 反映, 可能, 向上, 味方, 因果, 場合, 多様, 夢物語, 大幅, 大量, 失敗, 学習, 完了, 完全, 完璧, 実現, 実行, 実質, 寄与, 対応, 専門, 導入, 少量, 工夫, 希望, 常識, 強力, 形式, 必要, 思い, 性能, 手元, 手法, 技術, 抜群, 指定, 指示, 挿入, 推奨, 推論, 提供, 整形, 新た, 方法, 日々, 明日, 明確, 明示, 時代, 時間, 最大, 最新, 最適, 有効, 未知数, 本格, 格段, 格納, 構築, 様々, 比率, 民主, 活用, 活発, 消費, 混合, 済み, 温度, 準備, 無効, 無料, 特定, 特権, 現実, 理由, 環境, 生成, 発生, 登場, 的確, 相性, 短時間, 確認, 秘訣, 移動, 程度, 管理, 節約, 精度, 終了, 結合, 結果, 続行, 能力, 自体, 自分, 自動的, 蓄積, 表現, 言語, 計算, 記事, 設定, 許可, 調整, 費用, 軽量, 追加, 通常, 適用, 選択, 重み, 重要, 量子, 開始, 開発, 関数, 閾値, 非常, 高速, 高額, 魅力,

15分、本を読む時間を作ろうと思っています.積本消化していこうと.
2025.06.19
おはようございます.読書は、知識を深め、視野を広げ、心を豊かにしてくれる素晴らしい習慣です。たった15分でも、毎日続けることで多くのメリットがあります。
なぜ15分なのか?
15分という時間は、忙しい日々の中でも比較的確保しやすい長さです。この短時間でも集中して読書に取り組むことで、次のような効果が期待できます。
- 集中力の向上: 短時間でも読書に没頭することで、集中力を養うことができます。
- 知識の定着: 毎日少しずつでも読み進めることで、内容が頭に残りやすくなります。
- ストレス軽減: 読書は現実から一時的に離れ、心を落ち着かせる効果があります。
- 語彙力と表現力の向上: 様々な文章に触れることで、自然と語彙が増え、表現力も豊かになります。
15分読書を習慣にするためのヒント
電子書籍も活用する: スマートフォンやタブレットで手軽に読める電子書籍も、隙間時間の読書に役立ちます。
時間と場所を決める: 「朝食後」「寝る前」「通勤電車の中」など、毎日同じ時間と場所で読むようにすると習慣化しやすくなります。
手の届くところに本を置く: すぐに手に取れる場所に本を置いておくと、いざ読もうと思ったときにスムーズに始められます。
好きなジャンルから始める: まずは自分が興味のある本や好きなジャンルの本から読み始めましょう。読書が楽しくなり、習慣化へのモチベーションが高まります。
無理はしない: 毎日続けられなくても、自分を責めないでください。少しずつでも継続することが大切です。
というメリット等をAIに提示してもらったので読書を始めようと思っています.
因みに自分は電子積本がかなり多いです、その積本を消化していこうと思ったのが15分の読書です.
積本を消化するには一字一句読まないに限る.
昔は本を一字一句読む派だったんだけど、この頃は飛ばし飛ばし読む派に変わりました.大体、こんな内容だなって所、分かるのでそういう所や分かっている説明文は飛ばすスタイルに切り替えました.
読了した本は積本感想を書いていきます.恐らく月に一回ぐらいに一つの感想なのかもしれないけど書いていきます.
明日へ続く
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
こと, ジャンル, スタイル, ストレス, スマート, スムーズ, タブレット, ため, とき, ところ, ヒント, フォン, メリット, モチベーション, よう, 一つ, 一時, 内容, 効果, 向上, 場所, 多く, 大体, 大切, 好き, 定着, 感想, 手軽, 提示, 文章, 日々, 明日, 時間, 書籍, 朝食, 期待, 様々, 毎日, 没頭, 活用, 消化, 無理, 現実, 知識, 短時間, 確保, 継続, 習慣, 自分, 自然, 興味, 表現, 視野, 語彙, 説明, 読了, 読書, 豊か, 軽減, 通勤, 隙間, 集中, 電子, 電車,

慣れるか慣れないかではなくてなりたいが重要なのかもしれない.
2025.02.19
おはようございます.DevAsLifeのTakuyaさんみたいに自分はなりたいのだけども全然レベルが違って雲の上の人感覚が強いです.喋りも下手な自分にとってはなんか本当に差を感じたりします、喋りで損をしている気がしているのは凄く分かるのですが、なんかそんなに対した技術もないのでそれを表現するのがすごく苦手です.
慣れるか慣れないかで言えば、恐らくなれない可能性が高いですよね.これは元々のスペック的な要素です.でもなりたいという気持ちは捨てたらダメだとも思うです.それに近づこうという気持ちは大事、この気持ちを枯らしたら多分老けていくだろうと思っています.
自分みたいに思っている人で何から手を付けてよいのやらと思っている人は、何か一つはじめて続けることが大事なんだろうと思っています.そしたらある程度までは身につくことが可能です.この身につくまでの時間が自分の持っている元々のスペックが良いほど、短時間で身につくことが可能ですが大体の人は投げ出さない限り身につきます.
1年、2年単位で物事を考えるのも10年単位で物事を考えても考えた通りに人生は動かない、だいたい的外れ3日先でも当たらないだから将来なんてのは分からない.当たらないけど準備は大事だったり努力は大事だったり気持ちは大事だったりします.あと流れに乗るということは大事なことなんだろうなってこの頃は思っています.
明日へ続く
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
スペック, 人感覚, 人生, 努力, 将来, 差, 年単位, 技術, 損, 気持ち, 準備, 物事, 的外れ日先, 短時間, 程度, 要素, 身, 通り, 限り身, 雲,

chatGPTのようなサービスに速やかに変えるべき。ググらない。
2023.02.06
おはようございます。月曜日の朝、サイト検索は衰退するのかなぁ???個人でサイトを運営している人にとっては悲しいですよね。
Gさんは、chatGPTのような検索に速やかに変えるべきだと思っている。自分はchatGPTをやっているのだけど、答えはだいたい返ってくるし、指示の出し方によってはソースコードも生成も正確なコードを書いてくれる。
ソースコードだけの事に焦点を置いて書くと、複雑な計算式を用いたもののアルゴリズムや複雑なソースコードは書けない。また、スパゲティプログラムみたいな長文のコードなどは恐らく解読出来ないだろう。やった事はないので「だろう」なんですが。
機能追加により、コードが膨大になった物は理解出来ないなので、プログラマーはまだ大丈夫です。ですが、これからプログラマーを職にしたい方は辞めといた方が良いです。
一から新たなサービスを創るときにメソッド単位で命令をchatGPTに指示を出せば、大体作ってくれる。
話を戻して、何故、速やかに検索サービスを変えるべきなのか、それは検索よりも正確、そして短時間で答えが見つかるところです。そのうち気づくよ・・・一般人もchatGPTの優秀で時間短縮になるという事を。
だからYou.comは驚異の検索サービスですよ。
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
ChatGPT, YOU.com, アルゴリズム, コード, スパゲティプログラム, ソースコード, プログラマー, メソッド単位, 命令, 指示, 時間短縮, 月曜日, 朝, 焦点, 短時間, 答え, 職, 計算式, 長文, 驚異,
プログラム講師YOUTUBER、たにぐち まことさん。
2020.04.25
たにぐち まことさんという方がYOUTUBEでフロントエンドエンジニアやバックエンドエンジニアに対して有益な情報を公開しています。wordpressやvue.jsなどをわかりやすく解説しています。近々、kintoneの高知県講演(ライブ放送)で登壇される予定です。これからWEBのプログラマーやコーダーになりたい人は視聴して損はないと思います。自分が昔、HTMLなどを学んだときにはあまり本も買わずソースコード(HTMLコード)から勉強をしていましたが、いまはYOUTUBEという便利なツールがあるので、教育系YOUTUBERの動画を見て学習し手を動かして実践することにより短時間で学習することが出来ると思います。
自分がいまプログラミング初心者だったら、下記のようなプログラミング学習方法を取ると思います。YOUTUBEで教育系動画を視聴して動画で説明された物と同じ物を作成します。作成途中に分からない事があればググります、そして再度動画を観る。進まない時はSNSで質問をするなどを行いながら徐々に知識を身に着けていきます。知識がつくと基本を知ることが出来るので、次に違うプログラミング言語を学ぶ時の応用が付きます。尚、違う言語を学ぶときは以前まで使用していたプログラミング言語をいま勉強している言語で同じことを試してみるという事を行います。そうすることで比較的短時間で違う言語の勉強がスムーズになります。
最後にYOUTUBEチャンネル登録はこちら
たにぐち まことのともすたチャンネル
https://www.youtube.com/channel/UCphTq6mefx_15CjD35qgXgA
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
html, JS, kintone, vue, web, WordPress, youtube, YOUTUBER, いま, エンジニア, エンド, コーダー, コード, こと, これ, ソース, たにぐち, ツール, とき, バック, プログラマー, プログラミング, プログラム, フロント, まこと, ライブ, 下記, 予定, 事, 人, 作成, 便利, 公開, 初心者, 勉強, 動画, 学習, 実践, 情報, 手, 損, 放送, 教育, 方, 方法, 昔, 有益, 本, 物, 登壇, 短時間, 自分, 視聴, 解説, 説明, 講師, 講演, 途中, 高知県,