@Blog
日常日誌からプログラムやYOUTUBER紹介、旅日記まで日々更新中です。

AIで記事を学習して新たな記事を生み出すにはお金が必要だと思っていたがそうでも.
2025.06.22
おはようございます.AIで記事を学習して新たな記事を生み出すにはお金が必要だと思っていたがそうでもなくローカルPCでそこら辺に落ちているLlamaモデルを持ってきてチューニングすれば何とかなるじゃねぇという思いに至った.
実はあなたの手元にあるPCと、そこら中に「落ちている」オープンソースのAIモデル、特にLlama 3があれば、十分記事が生成できるんです。
ローカルAI記事生成は、もはや夢物語じゃない
「AIで記事生成」と聞くと、SFのような世界や、大企業だけが使える特権のように感じるかもしれません。しかし、今は違います。オープンソースの強力な言語モデル、特にMetaが公開したLlama 3の登場は、この常識を大きく覆しました。
Llama 3は、その性能の高さにもかかわらず、誰でも無料で利用できるという点が最大の魅力です。さらに、80億パラメータの8Bモデルであれば、最新のゲーミングPCとまではいかなくとも、ある程度の性能を持つPCであれば十分に動作します。これにより、高額なクラウドサービスを利用せずとも、自分のPCでAI記事生成の環境を構築することが現実的になりました。
なぜLlama 3があなたのPCと相性抜群なのか?
Llama 3がローカルPCでの記事生成に適している理由はいくつかあります。
- 完全無料のオープンソース: 利用に費用がかからないため、予算を気にせずAIを試したり、本格的に導入したりできます。
- 選べるモデルサイズ: Llama 3には様々なサイズのモデルがあり、PCのスペックに合わせて選べます。特に8Bモデルは、個人利用に最適なバランスを持っています。
- 活発な開発者コミュニティ: 世界中の開発者がLlama 3を使った新しいツールや効率的なチューニング方法を日々共有しています。困ったときには助けを借りられる心強い味方です。
- 「量子化」でさらに軽量に: モデルのサイズを大幅に小さくする「量子化」という技術を使えば、より少ないメモリでLlama 3を動かせるようになります。これにより、より多くのPCで利用の道が開けます。
あなたのPCを「記事生成マシン」に変える秘訣
もちろん、いきなりプロのライター並みの記事をAIに書かせるのは難しいかもしれません。しかし、ちょっとした工夫で「何とかなる」レベルの記事生成は十分に可能です。
- 少量のデータでファインチューニング: 大量の記事データは不要です。あなたが書きたい記事のテーマやスタイルに合った、質の良い記事を数十〜数百程度集めてLlama 3を学習(ファインチューニング)させれば、その分野に特化した記事生成能力が格段に向上します。
- プロンプト(指示文)の工夫: AIへの「指示の出し方」は非常に重要です。具体的で明確なプロンプトを与えることで、チューニングが完璧でなくても、驚くほど質の高い記事が生成できます。これはまるで、優秀なアシスタントに的確な指示を出すようなものです。
- 効率的な学習方法の活用: 「LoRA(Low-Rank Adaptation)」のような効率的なファインチューニング手法を使えば、少ないGPUメモリでも短時間でモデルを特定のタスクに最適化できます。
あなたの創造性が、今、AIで加速する
かつては一部の専門家や企業にしか手の届かなかったAIによる記事生成が、今やあなたのPCで実現できる時代になりました。これはまさにAI技術の「民主化」です。
とまぁそういう訳なので何とかしてみますが、ファインチューニングにどれぐらい時間がかかるのかが未知数だったりする.
ファインチューニングPythonコード
以下のPythonコードは、Llama 3モデルをロードし、提供されたテキスト記事でファインチューニング(LoRA使用)を実行し、結果を保存します。 上記の入力値は、このコードに自動的に反映されます。 このコードをPythonファイル(例: `finetune_llama.py`)として保存し、実行してください。
import os
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
# GPUの利用可能性を確認
print("GPUが利用可能か確認中...")
if not torch.cuda.is_available():
print("GPUが見つかりません。Fine-tuningにはGPUが強く推奨されます。")
# GPUがない場合は、ここでスクリプトを終了するか、CPUモードで続行するか選択できます。
# exit("GPUがないため終了します。")
else:
print(f"GPUが利用可能です: {torch.cuda.get_device_name(0)}")
# --- 1. モデルとトークナイザーのロード ---
# Llama 3モデルのパスを指定します。Hugging Faceのモデル名(例: "meta-llama/Llama-3-8B")
# またはローカルにダウンロードしたモデルのパスを指定してください。
MODEL_NAME = "meta-llama/Llama-3-8B" # ユーザーが入力したパスがここに挿入されます
print(f"モデルとトークナイザーをロード中: {MODEL_NAME}")
# 4bit量子化設定 (GPUメモリの節約に役立ちます)
# bnb_4bit_compute_dtypeは、Ampere以降のNVIDIA GPUに推奨されるbfloat16を使用しています。
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4", # NF4 (NormalFloat4) 量子化タイプ
bnb_4bit_compute_dtype=torch.bfloat16
)
# トークナイザーをロード
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
# Llama 3はデフォルトでbos_tokenを付与しないことがあるため、明示的に追加。
# また、padding_side='right'はLlamaモデルに推奨される設定です。
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# モデルをロードし、量子化設定を適用し、自動的にGPUにマッピングします。
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
device_map="auto", # 利用可能なデバイス(GPU)に自動的にモデルを分散
trust_remote_code=True # リモートコードの実行を許可
)
print("モデルロード完了。")
# k-bit学習用にモデルを準備 (PEFTライブラリのため)
# gradient_checkpointingを有効にすることで、メモリ使用量をさらに削減できます。
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
print("k-bit学習用にモデルを準備しました。")
# --- 2. データセットの準備 ---
# あなたのテキスト記事ファイルが格納されているディレクトリを指定します。
# 例: 'your_article_data/' の中に 'article1.txt', 'article2.txt', ... と置かれている場合
DATA_DIR = "./your_article_data/" # ユーザーが入力したパスがここに挿入されます
print(f"データセットをロード中: {DATA_DIR}")
# 'text'形式でデータセットをロードします。指定されたディレクトリ内のすべての.txtファイルを読み込みます。
# 各ファイルが1つのエントリとして扱われます。
try:
dataset = load_dataset('text', data_files={'train': os.path.join(DATA_DIR, '*.txt')})
print(f"データセットのサンプル数: {len(dataset['train'])}")
except Exception as e:
print(f"データセットのロード中にエラーが発生しました。ディレクトリとファイル形式を確認してください: {e}")
exit("データセットロード失敗。")
# データセットをトークン化する関数
# 長い記事をモデルの最大入力長に分割します。
def tokenize_function(examples):
# Llama 3の最大入力長は通常8192ですが、お使いのGPUのVRAMに合わせて調整してください。
# ここでは一般的な値として2048を設定しています。
max_length = 2048
# truncate=Trueで最大長を超えるテキストを切り捨てます。
return tokenizer(examples["text"], truncation=True, max_length=max_length)
# データセットをトークン化します。
# num_procはCPUコア数に応じて並列処理を行い、処理を高速化します。
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
num_proc=os.cpu_count(),
remove_columns=["text"] # 元のテキスト列は学習に不要になるため削除します。
)
print("データセットのトークン化が完了しました。")
# --- 3. PEFT (LoRA) の設定 ---
# LoRA (Low-Rank Adaptation) は、元のモデルの重みをフリーズし、
# 小さなアダプター層を追加して学習させることで、効率的にファインチューニングを行います。
# これにより、GPUメモリの使用量を抑えつつ、高い性能を実現できます。
lora_config = LoraConfig(
r=16, # LoRAのランク。値を大きくすると表現力が増すが、メモリ消費も増える。
lora_alpha=32, # LoRAのスケーリング係数。rの2倍程度が推奨されることが多いです。
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], # LoRAを適用する層。Llamaモデルで一般的な層。
bias="none", # バイアスを学習しない設定。
lora_dropout=0.05, # ドロップアウト率。過学習を防ぐために設定します。
task_type=TaskType.CAUSAL_LM, # タスクタイプを因果言語モデルに設定。
)
# モデルにLoRAアダプターを追加します。
model = get_peft_model(model, lora_config)
print("モデルにLoRAアダプターを適用しました。")
model.print_trainable_parameters() # 学習可能なパラメータ数を確認します。
# --- 4. 学習の実行 ---
# 学習済みモデルを保存するディレクトリ
OUTPUT_DIR = "./llama3_finetuned_model/" # ユーザーが入力したパスがここに挿入されます
# 学習の設定
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
num_train_epochs=3, # エポック数。データセットのサイズと希望する精度に応じて調整してください。
per_device_train_batch_size=1, # GPUあたりのバッチサイズ。VRAMが少ない場合は1に設定。
gradient_accumulation_steps=4, # 勾配を蓄積するステップ数。実質的なバッチサイズは per_device_train_batch_size * gradient_accumulation_steps になります。
optim="paged_adamw_8bit", # 8bit AdamWオプティマイザを使用し、メモリ効率を向上させます。
save_steps=500, # 500ステップごとにモデルを保存します。
logging_steps=100, # 100ステップごとにログを出力します。
learning_rate=2e-4, # 学習率。
fp16=True, # 混合精度学習を有効化 (GPUが対応している場合)。VRAM削減と高速化に寄与します。
max_steps=-1, # num_train_epochsに基づいて学習します。
group_by_length=True, # 同じ長さのシーケンスをグループ化し、パディングを削減します。
lr_scheduler_type="cosine", # 学習率スケジューラーのタイプ。
warmup_ratio=0.03, # ウォームアップ比率。
report_to="none", # レポート先を指定しない (wandbなどを使用しない場合)。
)
# トレーナーの初期化
# data_collatorは、モデルの入力形式に合わせてデータを整形します。
trainer = Trainer(
model=model,
train_dataset=tokenized_dataset["train"],
args=training_args,
data_collator=lambda data: {
'input_ids': torch.stack([f['input_ids'] for f in data]),
'attention_mask': torch.stack([f['attention_mask'] for f in data]),
'labels': torch.stack([f['input_ids'] for f in data]), # 因果言語モデルでは、入力自体がラベルとなります。
},
)
# 学習の開始
print("Fine-tuningを開始します...")
trainer.train()
print("Fine-tuningが完了しました。")
# --- 5. 学習済みモデルの保存 ---
# LoRAアダプターのみを保存します。これにより、ファイルサイズが小さく、効率的に管理できます。
trainer.save_model(OUTPUT_DIR)
print(f"学習済みLoRAアダプターが '{OUTPUT_DIR}' に保存されました。")
# 保存したアダプターを使って推論を行う方法の例 (コメントアウトされています):
# このコードは、ファインチューニング後にモデルをロードして推論を行うための参考例です。
# from peft import PeftModel
#
# # 元のモデルをロード (学習時と同じ量子化設定を使用します)
# base_model = AutoModelForCausalLM.from_pretrained(
# MODEL_NAME,
# quantization_config=bnb_config,
# device_map="auto",
# trust_remote_code=True
# )
#
# # 保存したLoRAアダプターを元のモデルに結合します。
# peft_model = PeftModel.from_pretrained(base_model, OUTPUT_DIR)
#
# # 推論モードに設定します。
# peft_model.eval()
#
# # テキスト生成の例
# prompt = "ローカルPCでのLlama 3ファインチューニングの利点とは"
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # 入力をGPUに移動
#
# with torch.no_grad(): # 勾配計算を無効化し、メモリ使用量を削減
# outputs = peft_model.generate(
# **inputs,
# max_new_tokens=200, # 生成する新しいトークンの最大数
# do_sample=True, # サンプリングによる生成を有効化
# top_p=0.9, # Nucleusサンプリングの閾値
# temperature=0.7, # 生成の多様性を制御する温度
# eos_token_id=tokenizer.eos_token_id # 終了トークンID
# )
# print("\n--- 生成されたテキスト ---")
# print(tokenizer.decode(outputs[0], skip_special_tokens=True))
明日へ続く
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
```, ;;), )。, アウト, アシスタント, アダプター, あたり, アップ, あなた, いくつ, ウォーム, エポック, エラー, エントリ, オープン, オプティマイザ, お金, クラウドサービス, グループ, クン, ゲーミング, コード, コア, ここ, こと, コミュニティ, コメント, これ, サイズ, サンプリング, サンプル, シーケンス, スクリプト, スケーリング, スケジューラー, スタイル, ステップ, スペック, すべて, ソース, そこら, タイプ, ダウンロード, タスク, ため, チューニング, ツール, データ, データセット, テーマ, ディレクトリ, テキスト, デバイス, デフォルト, トー, トークナイザー, とき, どれ, トレーナー, ドロップ, バイアス, パス, バッチ, パディング, パラメータ, バランス, ファイル, ファイルサイズ, ファインチューニング, ファインチューニングコード, フリーズ, プロ, プロンプト, マシン, マッピング, メモリ, モード, モデル, もの, ユーザー, よう, ライター, ライブラリ, ラベル, ランク, リモート, レベル, レポート, ローカル, ロード, ログ, 一般, 一部, 上記, 不要, 世界, 世界中, 並み, 並列, 予算, 付与, 以下, 以降, 企業, 使い, 使用, 係数, 保存, 個人, 優秀, 入力, 公開, 共有, 具体, 処理, 出力, 分割, 分散, 分野, 初期, 利点, 利用, 制御, 削減, 削除, 創造, 加速, 助け, 効率, 動作, 勾配, 十分, 参考, 反映, 可能, 向上, 味方, 因果, 場合, 多様, 夢物語, 大幅, 大量, 失敗, 学習, 完了, 完全, 完璧, 実現, 実行, 実質, 寄与, 対応, 専門, 導入, 少量, 工夫, 希望, 常識, 強力, 形式, 必要, 思い, 性能, 手元, 手法, 技術, 抜群, 指定, 指示, 挿入, 推奨, 推論, 提供, 整形, 新た, 方法, 日々, 明日, 明確, 明示, 時代, 時間, 最大, 最新, 最適, 有効, 未知数, 本格, 格段, 格納, 構築, 様々, 比率, 民主, 活用, 活発, 消費, 混合, 済み, 温度, 準備, 無効, 無料, 特定, 特権, 現実, 理由, 環境, 生成, 発生, 登場, 的確, 相性, 短時間, 確認, 秘訣, 移動, 程度, 管理, 節約, 精度, 終了, 結合, 結果, 続行, 能力, 自体, 自分, 自動的, 蓄積, 表現, 言語, 計算, 記事, 設定, 許可, 調整, 費用, 軽量, 追加, 通常, 適用, 選択, 重み, 重要, 量子, 開始, 開発, 関数, 閾値, 非常, 高速, 高額, 魅力,

TensorFlow Lite(テンソルフロー ライト)をインストールしモデル実行まで。
2021.06.14
ラズベリーパイ3にTensorFlow Lite(テンソルフロー ライト)をインストールしモデル実行まで軽く字幕で紹介した動画が下記になります。インストール方法は公式に書かれた通りに実行すれば上手くインストール出来るはずです。比較的に低スペックのマシンでも動くはずなのです、どうしてもエラーが出て動かないようであれば、それはおそらくあなたのマシンに問題があります?。
動画でハマりどころがあるという事をブログで解説しますと書いていますので、そのハマりどころを解説します。。。
TensorFlow Lite(テンソルフロー ライト)で動かす場合、label_image.pyの修正箇所が公式に書かれていると思いますが・・・?、ここで自分がハマり、実行するコマンドを打ってもパラメーターがどうたらというエラーが出力されて動きませんでした。結論から言うと原因はマスターのソースコードにあったのです。修正を要領よく修正しては駄目だった。直接的な原因となったのは–num_threadsのパラメーターを投げていたのが原因でした。
公式では下記の内容に変更しなさいと書かれています。tf.lite.Interpreterの部分を置き換えればよいだろうと思っていたのです。
interpreter = tf.lite.Interpreter(model_path=args.model_file)
マスターのソースコードは若干、公式とは違ってこのようなソースコードになっていました。
interpreter = tf.lite.Interpreter(
model_path=args.model_file, num_threads=args.num_threads)
渡す引数が一つ増えていたので、自分はそれを残していたのですが・・・?、これでは動かないのです。そう・・num_threads=args.num_threadsは削除してあげないとモデルを動かすことが出来なかったのです。それがわからず渡すパラメーターが駄目なんだとか思って四苦八苦していました。
自分みたいな修正方法している方も中にはいると思ったので、今回、初心者がハマった沼を紹介しました?。
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
3, image, label, LITE, py, tensorflow, あなた, インストール, エラー, コード, ここ, コマンド, スペック, ソース, それ, テンソル, はい, パス, パラメーター, フロー, ブログ, マシン, マスター, モデル, ライド, ラズベリー, 下記, 事, 修正, 公式, 出力, 動画, 原因, 問題, 場合, 字幕, 実行, 方法, 箇所, 紹介, 結論, 自分, 解説, 通り,

映画、ジェミニマンを観ましたよ。
2021.03.17
映画、ジェミニマンを観ましたよ。どちらかという古典的な映画を観ている感じがしましたが、実際、こういう事が技術的には可能なわけですよね。北朝鮮とかもうこんな事を行っていてもおかしくはない気がする、そう思ってみると何だか、「ぞっ」とする話なんだけどね。そして臓器を3Dプリンターでつくる技術は年々、向上しているみたいでこのままの技術向上のまま進めば、自分たちが生きているうちに臓器の取替は可能になるみたいです。最初は保険が効かないし高額だと思いますが、臓器を変えることにより寿命延長できることは確かです。でも手術とかするのもやだなー怖いなーという自分はマイクロマシンやナノマシンに期待しています。そちらの方が安価な再生医療かなと思ったりしますね。そんな事を考えながらジェミニマンを見ていたわけではありません。
因みにジェミニとはローマ神話でカストルとポルックスの双子の兄弟を指すそうですよ。
著者名
@taoka_toshiaki
※この記事は著者が40代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
3, うち, カストル, こと, このまま, ジェミニ, そちら, だなー, どちらか, ナノ, プリンター, ポルックス, マイクロ, マシン, まま, マン, ローマ, わけ, 事, 保険, 兄弟, 再生, 北朝鮮, 医療, 双子, 取替, 可能, 向上, 安価, 実際, 寿命, 年々, 延長, 感じ, 手術, 技術, 方, 映画, 最初, 期待, 気, 神話, 臓器, 自分, 話, 高額,

いまの人工知能っていうのは意識というものは無いけれども。
2016.06.17
いまの人工知能っていうのは意識というものは無いけれども
マニュアルがあるモノは全て人工知能で代替できると自分は思っています。
(人工知能に意識は必要ないとも思います。)
なので、いまの仕事の殆どは最終的には人工知能を積んだロボットが代行すると思っています。人は仕事をしなくなったらどうなるのだろうか?
逆に言えばロボットに仕事を課すことによって人はもっと人間らしい生き方ができるようになるかもしれないし、いまの様にお金という概念に執着心や左右される事無く生きていけるのかもしれないと思っています。
おそらく、人工知能+ロボット+クラウドで今後、20年?30年で世の中、結構変わるじゃないかな?
今後50年後でロボットと人工知能がかなり社会に浸透していくと思うわけです。
ザ・セカンド・マシン・エイジという分厚い本の中にもそのような事が書かれていました。
望まなくとも研究開発は日々進んでいます、グーグル検索などやsiriなどを使ったことがある人なら、その時点で人工知能のサービスを使っていると言えます。おそらく5年後のオリンピックで自動運転車が東京では走っているでしょうし、その後、日本では自動運転車が浸透していくと思います。
5年後なんてあっという間にきます。
その頃には、世の中どうなっているのかと思うと、ワクワクしますね。
人工知能搭載されたロボットが至る所で活躍している世の中をこの目で早く見てみたいものです。
その頃には人は、今よりも宇宙へ目を向けていると思います。
著者名
@taoka_toshiaki
※この記事は著者が30代前半に書いたものです.
Profile
高知県在住の@taoka_toshiakiです、記事を読んで頂きありがとうございます.
数十年前から息を吸うように日々記事を書いてます.たまに休んだりする日もありますがほぼ毎日投稿を心掛けています😅.
SNSも使っています、フォロー、いいね、シェア宜しくお願い致します🙇.
SNS::@taoka_toshiaki
タグ
20, 30, 50, siri, いま, エイジ, お金, かなり, グーグル, クラウド, こと, サ, セカンド, マシン, マニュアル, もの, ロボット, 世, 中, 事, 人, 人工, 今後, 仕事, 代替, 代行, 全て, 執着心, 左右, 意識, 日々, 本, 検索, 概念, 殆ど, 浸透, 生き方, 知能, 研究, 社会, 自分, 逆, 開発,